3.2.44 \(\int \frac {\csc ^3(e+f x)}{(a+b \tan ^2(e+f x))^{5/2}} \, dx\) [144]

3.2.44.1 Optimal result
3.2.44.2 Mathematica [B] (verified)
3.2.44.3 Rubi [A] (verified)
3.2.44.4 Maple [B] (warning: unable to verify)
3.2.44.5 Fricas [B] (verification not implemented)
3.2.44.6 Sympy [F]
3.2.44.7 Maxima [F(-1)]
3.2.44.8 Giac [F]
3.2.44.9 Mupad [F(-1)]

3.2.44.1 Optimal result

Integrand size = 25, antiderivative size = 177 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=-\frac {(a-5 b) \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{2 a^{7/2} f}-\frac {\cot (e+f x) \csc (e+f x)}{2 a f \left (a-b+b \sec ^2(e+f x)\right )^{3/2}}-\frac {5 b \sec (e+f x)}{6 a^2 f \left (a-b+b \sec ^2(e+f x)\right )^{3/2}}-\frac {(13 a-15 b) b \sec (e+f x)}{6 a^3 (a-b) f \sqrt {a-b+b \sec ^2(e+f x)}} \]

output
-1/2*(a-5*b)*arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))/a^(7/2 
)/f-1/2*cot(f*x+e)*csc(f*x+e)/a/f/(a-b+b*sec(f*x+e)^2)^(3/2)-5/6*b*sec(f*x 
+e)/a^2/f/(a-b+b*sec(f*x+e)^2)^(3/2)-1/6*(13*a-15*b)*b*sec(f*x+e)/a^3/(a-b 
)/f/(a-b+b*sec(f*x+e)^2)^(1/2)
 
3.2.44.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(380\) vs. \(2(177)=354\).

Time = 5.78 (sec) , antiderivative size = 380, normalized size of antiderivative = 2.15 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\frac {\frac {\sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (8 a b^2 \cos (e+f x)-24 (a-b) b \cos (e+f x) (a+b+(a-b) \cos (2 (e+f x)))-3 (a-b) (a+b+(a-b) \cos (2 (e+f x)))^2 \cot (e+f x) \csc (e+f x)\right )}{3 a^3 (a-b) (a+b+(a-b) \cos (2 (e+f x)))^2}+\frac {(a-5 b) \cos (e+f x) \left (2 \text {arctanh}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right ) \sec ^2\left (\frac {1}{2} (e+f x)\right ) \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)}}{2 a^{7/2} \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^4\left (\frac {1}{2} (e+f x)\right )}}}{2 f} \]

input
Integrate[Csc[e + f*x]^3/(a + b*Tan[e + f*x]^2)^(5/2),x]
 
output
((Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*(8*a*b^2 
*Cos[e + f*x] - 24*(a - b)*b*Cos[e + f*x]*(a + b + (a - b)*Cos[2*(e + f*x) 
]) - 3*(a - b)*(a + b + (a - b)*Cos[2*(e + f*x)])^2*Cot[e + f*x]*Csc[e + f 
*x]))/(3*a^3*(a - b)*(a + b + (a - b)*Cos[2*(e + f*x)])^2) + ((a - 5*b)*Co 
s[e + f*x]*(2*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a 
*(-1 + Tan[(e + f*x)/2]^2)^2]/Sqrt[a]] + Log[a - 2*b - a*Tan[(e + f*x)/2]^ 
2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]]) 
*Sec[(e + f*x)/2]^2*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2 
])/(2*a^(7/2)*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[(e + f*x)/2]^4]) 
)/(2*f)
 
3.2.44.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4147, 373, 402, 25, 27, 402, 27, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x)^3 \left (a+b \tan (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 4147

\(\displaystyle \frac {\int \frac {\sec ^2(e+f x)}{\left (1-\sec ^2(e+f x)\right )^2 \left (b \sec ^2(e+f x)+a-b\right )^{5/2}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\frac {\sec (e+f x)}{2 a \left (1-\sec ^2(e+f x)\right ) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\int \frac {-4 b \sec ^2(e+f x)+a-b}{\left (1-\sec ^2(e+f x)\right ) \left (b \sec ^2(e+f x)+a-b\right )^{5/2}}d\sec (e+f x)}{2 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\sec (e+f x)}{2 a \left (1-\sec ^2(e+f x)\right ) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\frac {5 b \sec (e+f x)}{3 a \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\int -\frac {(a-b) \left (-10 b \sec ^2(e+f x)+3 a-5 b\right )}{\left (1-\sec ^2(e+f x)\right ) \left (b \sec ^2(e+f x)+a-b\right )^{3/2}}d\sec (e+f x)}{3 a (a-b)}}{2 a}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\sec (e+f x)}{2 a \left (1-\sec ^2(e+f x)\right ) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\frac {\int \frac {(a-b) \left (-10 b \sec ^2(e+f x)+3 a-5 b\right )}{\left (1-\sec ^2(e+f x)\right ) \left (b \sec ^2(e+f x)+a-b\right )^{3/2}}d\sec (e+f x)}{3 a (a-b)}+\frac {5 b \sec (e+f x)}{3 a \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\sec (e+f x)}{2 a \left (1-\sec ^2(e+f x)\right ) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\frac {\int \frac {-10 b \sec ^2(e+f x)+3 a-5 b}{\left (1-\sec ^2(e+f x)\right ) \left (b \sec ^2(e+f x)+a-b\right )^{3/2}}d\sec (e+f x)}{3 a}+\frac {5 b \sec (e+f x)}{3 a \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\sec (e+f x)}{2 a \left (1-\sec ^2(e+f x)\right ) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\frac {\frac {b (13 a-15 b) \sec (e+f x)}{a (a-b) \sqrt {a+b \sec ^2(e+f x)-b}}-\frac {\int -\frac {3 (a-5 b) (a-b)}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{a (a-b)}}{3 a}+\frac {5 b \sec (e+f x)}{3 a \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\sec (e+f x)}{2 a \left (1-\sec ^2(e+f x)\right ) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\frac {\frac {3 (a-5 b) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{a}+\frac {b (13 a-15 b) \sec (e+f x)}{a (a-b) \sqrt {a+b \sec ^2(e+f x)-b}}}{3 a}+\frac {5 b \sec (e+f x)}{3 a \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\sec (e+f x)}{2 a \left (1-\sec ^2(e+f x)\right ) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\frac {\frac {3 (a-5 b) \int \frac {1}{1-\frac {a \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}}{a}+\frac {b (13 a-15 b) \sec (e+f x)}{a (a-b) \sqrt {a+b \sec ^2(e+f x)-b}}}{3 a}+\frac {5 b \sec (e+f x)}{3 a \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\sec (e+f x)}{2 a \left (1-\sec ^2(e+f x)\right ) \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}-\frac {\frac {\frac {3 (a-5 b) \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{a^{3/2}}+\frac {b (13 a-15 b) \sec (e+f x)}{a (a-b) \sqrt {a+b \sec ^2(e+f x)-b}}}{3 a}+\frac {5 b \sec (e+f x)}{3 a \left (a+b \sec ^2(e+f x)-b\right )^{3/2}}}{2 a}}{f}\)

input
Int[Csc[e + f*x]^3/(a + b*Tan[e + f*x]^2)^(5/2),x]
 
output
(Sec[e + f*x]/(2*a*(1 - Sec[e + f*x]^2)*(a - b + b*Sec[e + f*x]^2)^(3/2)) 
- ((5*b*Sec[e + f*x])/(3*a*(a - b + b*Sec[e + f*x]^2)^(3/2)) + ((3*(a - 5* 
b)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/a^(3/2) 
 + ((13*a - 15*b)*b*Sec[e + f*x])/(a*(a - b)*Sqrt[a - b + b*Sec[e + f*x]^2 
]))/(3*a))/(2*a))/f
 

3.2.44.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4147
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^ 
m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m + 1 
)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[( 
m - 1)/2]
 
3.2.44.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(26226\) vs. \(2(157)=314\).

Time = 6.77 (sec) , antiderivative size = 26227, normalized size of antiderivative = 148.18

method result size
default \(\text {Expression too large to display}\) \(26227\)

input
int(csc(f*x+e)^3/(a+b*tan(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.2.44.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 431 vs. \(2 (157) = 314\).

Time = 0.47 (sec) , antiderivative size = 889, normalized size of antiderivative = 5.02 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\left [-\frac {3 \, {\left ({\left (a^{4} - 8 \, a^{3} b + 18 \, a^{2} b^{2} - 16 \, a b^{3} + 5 \, b^{4}\right )} \cos \left (f x + e\right )^{6} - {\left (a^{4} - 10 \, a^{3} b + 32 \, a^{2} b^{2} - 38 \, a b^{3} + 15 \, b^{4}\right )} \cos \left (f x + e\right )^{4} - a^{2} b^{2} + 6 \, a b^{3} - 5 \, b^{4} - {\left (2 \, a^{3} b - 15 \, a^{2} b^{2} + 28 \, a b^{3} - 15 \, b^{4}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) - 2 \, {\left (3 \, {\left (a^{4} - 7 \, a^{3} b + 11 \, a^{2} b^{2} - 5 \, a b^{3}\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (9 \, a^{3} b - 23 \, a^{2} b^{2} + 15 \, a b^{3}\right )} \cos \left (f x + e\right )^{3} + {\left (13 \, a^{2} b^{2} - 15 \, a b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{12 \, {\left ({\left (a^{7} - 3 \, a^{6} b + 3 \, a^{5} b^{2} - a^{4} b^{3}\right )} f \cos \left (f x + e\right )^{6} - {\left (a^{7} - 5 \, a^{6} b + 7 \, a^{5} b^{2} - 3 \, a^{4} b^{3}\right )} f \cos \left (f x + e\right )^{4} - {\left (2 \, a^{6} b - 5 \, a^{5} b^{2} + 3 \, a^{4} b^{3}\right )} f \cos \left (f x + e\right )^{2} - {\left (a^{5} b^{2} - a^{4} b^{3}\right )} f\right )}}, \frac {3 \, {\left ({\left (a^{4} - 8 \, a^{3} b + 18 \, a^{2} b^{2} - 16 \, a b^{3} + 5 \, b^{4}\right )} \cos \left (f x + e\right )^{6} - {\left (a^{4} - 10 \, a^{3} b + 32 \, a^{2} b^{2} - 38 \, a b^{3} + 15 \, b^{4}\right )} \cos \left (f x + e\right )^{4} - a^{2} b^{2} + 6 \, a b^{3} - 5 \, b^{4} - {\left (2 \, a^{3} b - 15 \, a^{2} b^{2} + 28 \, a b^{3} - 15 \, b^{4}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) + {\left (3 \, {\left (a^{4} - 7 \, a^{3} b + 11 \, a^{2} b^{2} - 5 \, a b^{3}\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (9 \, a^{3} b - 23 \, a^{2} b^{2} + 15 \, a b^{3}\right )} \cos \left (f x + e\right )^{3} + {\left (13 \, a^{2} b^{2} - 15 \, a b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{6 \, {\left ({\left (a^{7} - 3 \, a^{6} b + 3 \, a^{5} b^{2} - a^{4} b^{3}\right )} f \cos \left (f x + e\right )^{6} - {\left (a^{7} - 5 \, a^{6} b + 7 \, a^{5} b^{2} - 3 \, a^{4} b^{3}\right )} f \cos \left (f x + e\right )^{4} - {\left (2 \, a^{6} b - 5 \, a^{5} b^{2} + 3 \, a^{4} b^{3}\right )} f \cos \left (f x + e\right )^{2} - {\left (a^{5} b^{2} - a^{4} b^{3}\right )} f\right )}}\right ] \]

input
integrate(csc(f*x+e)^3/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="fricas")
 
output
[-1/12*(3*((a^4 - 8*a^3*b + 18*a^2*b^2 - 16*a*b^3 + 5*b^4)*cos(f*x + e)^6 
- (a^4 - 10*a^3*b + 32*a^2*b^2 - 38*a*b^3 + 15*b^4)*cos(f*x + e)^4 - a^2*b 
^2 + 6*a*b^3 - 5*b^4 - (2*a^3*b - 15*a^2*b^2 + 28*a*b^3 - 15*b^4)*cos(f*x 
+ e)^2)*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 + 2*sqrt(a)*sqrt(((a - b)*c 
os(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 
 1)) - 2*(3*(a^4 - 7*a^3*b + 11*a^2*b^2 - 5*a*b^3)*cos(f*x + e)^5 + 2*(9*a 
^3*b - 23*a^2*b^2 + 15*a*b^3)*cos(f*x + e)^3 + (13*a^2*b^2 - 15*a*b^3)*cos 
(f*x + e))*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/((a^7 - 3*a^ 
6*b + 3*a^5*b^2 - a^4*b^3)*f*cos(f*x + e)^6 - (a^7 - 5*a^6*b + 7*a^5*b^2 - 
 3*a^4*b^3)*f*cos(f*x + e)^4 - (2*a^6*b - 5*a^5*b^2 + 3*a^4*b^3)*f*cos(f*x 
 + e)^2 - (a^5*b^2 - a^4*b^3)*f), 1/6*(3*((a^4 - 8*a^3*b + 18*a^2*b^2 - 16 
*a*b^3 + 5*b^4)*cos(f*x + e)^6 - (a^4 - 10*a^3*b + 32*a^2*b^2 - 38*a*b^3 + 
 15*b^4)*cos(f*x + e)^4 - a^2*b^2 + 6*a*b^3 - 5*b^4 - (2*a^3*b - 15*a^2*b^ 
2 + 28*a*b^3 - 15*b^4)*cos(f*x + e)^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - 
 b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) + (3*(a^4 - 7*a^3* 
b + 11*a^2*b^2 - 5*a*b^3)*cos(f*x + e)^5 + 2*(9*a^3*b - 23*a^2*b^2 + 15*a* 
b^3)*cos(f*x + e)^3 + (13*a^2*b^2 - 15*a*b^3)*cos(f*x + e))*sqrt(((a - b)* 
cos(f*x + e)^2 + b)/cos(f*x + e)^2))/((a^7 - 3*a^6*b + 3*a^5*b^2 - a^4*b^3 
)*f*cos(f*x + e)^6 - (a^7 - 5*a^6*b + 7*a^5*b^2 - 3*a^4*b^3)*f*cos(f*x + e 
)^4 - (2*a^6*b - 5*a^5*b^2 + 3*a^4*b^3)*f*cos(f*x + e)^2 - (a^5*b^2 - a...
 
3.2.44.6 Sympy [F]

\[ \int \frac {\csc ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\csc ^{3}{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(csc(f*x+e)**3/(a+b*tan(f*x+e)**2)**(5/2),x)
 
output
Integral(csc(e + f*x)**3/(a + b*tan(e + f*x)**2)**(5/2), x)
 
3.2.44.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\text {Timed out} \]

input
integrate(csc(f*x+e)^3/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="maxima")
 
output
Timed out
 
3.2.44.8 Giac [F]

\[ \int \frac {\csc ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\csc \left (f x + e\right )^{3}}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(csc(f*x+e)^3/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.44.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {1}{{\sin \left (e+f\,x\right )}^3\,{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{5/2}} \,d x \]

input
int(1/(sin(e + f*x)^3*(a + b*tan(e + f*x)^2)^(5/2)),x)
 
output
int(1/(sin(e + f*x)^3*(a + b*tan(e + f*x)^2)^(5/2)), x)